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NOTE 

On the Calculation of Coupling Coefficients in Amplitude Equations 

1. INTRODUCTION 

Amplitude equations are often used to describe 
marginally unstable phenomena in physical systems. 
Allowing for spatial modulation, the canonical forms for 
these equations are the (in general, coupled) Ginzburg- 
Landau equations. The form of these equations is universal 
but the sets of coefficients vary. To treat a specific problem, 
it is necessary to calculate the values of the coefficients 
appearing in the amplitude equations, and it is desirable to 
have an efficient and reliable way to do this. 

It has also been recently realized that many solutions 
observed in numerical simulations of partial differential 
equations can be explained by analyzing the dynamics in 
neighborhoods of multiple bifurcation points. This strategy 
has been advocated by Golubitsky and Guckenheimer [ 11, 
among others, and has been found useful in a number of 
examples. Such problems may involve defective eigenspaces, 
and there is a need for an efficient reduction procedure to 
obtain coupling coefficients in the amplitude equations in 
these cases as well. 

In the context of fluid mechanics, Ginzburg-Landau 
equations were first derived by Stewartson and Stuart [2] 
and by Newell and Whitehead [3]. The method of their 
derivation also suggests the algorithm for calculation of 
parameters that appear in equations. The straightforward 
way of calculation of coupling coefficients in the case of a 
single amplitude equation consists of the following main 
steps: 

(a) find the neutral eigenmode of the linear eigenvalue 
problem. 

(b) solve the inhomogeneous linear equations corre- 
sponding to second harmonics. 

(c) find the inhomogeneous term in the resonant 
equation. 

(d) find the neutral eigenmode of the adjoint eigenvalue 
problem. 

(e) find coupling coefficient from the sovability condi- 
tion which requires that (c) be orthogonal to (d), a step 
which involves integration. 

In this paper we describe a purely algebraic approach to 
the problem of finding coupling coefficients, which we have 

used and described previously, but without details, in 
Mahalov and Leibovich [4]. We show that under the 
assumption that the Q-R factorization or the Singular 
Value Decomposition (SVD) of matrices of linear problems 
is available, steps (d) and (e) can be replaced with one 
matrix-vector multiplication and one division of two com- 
plex numbers. There is no need for the explicit calculation of 
adjoint eigenfunctions of the linear problem. We note that 
the Q-R factorization is obtained for free after step (a) is 
completed, and once this step is accomplished, the com- 
putation of the coupling coefficients requires on the order of 
N2 complex multiplications, where N is the number of the 
basis functions used in the discretization. Thus, our method 
provides substantial simplification of the standard com- 
putational procedure and reduces the number of operations. 
All steps of the method are purely algebraic, and numerical 
quadrature, which adds additional programming com- 
plexity and can degrade accuracy, is avoided. 

2. DESCRIPTION OF THE ALGORITHM 

We write the equations under investigation symbolically 
in the following form 

du 
dr=Lu+N(u). 

Here L is a linear partial differential operator on the spatial 
(x) variables alone, and N is a nonlinear operator involving 
spatial differentiation. For definiteness, in this paper we 
consider equations with quadratic nonlinearity N(u), with 
the Navier-Stokes equations in mind. Without loss of 
generality, we assume that u = 0 is the base state, the 
stability of which we wish to investigate. The linear problem 

Lv=cJv (2) 

serves as the starting point for the weakly nonlinear calcula- 
tions. Under the assumption (which is not essential for the 
method) that there are two homogeneous directions and 
one inhomogeneous direction (e.g., as in channel and pipe 
flows), we project Eq. (2) on the N vectors of the Galerkin 
basis in the inhomogeneous direction (typically, Chebyshev 
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polynomials). Then we obtain an algebraic eigenvalue 
problem 

A(a, p, R)w = gw, (3) 

where c1 and /? are wavenumbers in homogeneous directions, 
R is a (possibly vector-value) control parameter like the 
Reynolds number CJ is a complex eigenvalue, A is a complex 
N x N complex matrix, and w is the eigenvector of Galerkin 
coefficients. The representation in the physical domain is 
given by v = T ~ ‘w, where T is the linear operator of 
the Chebyshev transformation and T ’ is the inverse 
Chebyshev transform. 

On surfaces in the parameter space where the linear 
eigenproblem has simple complex conjugate roots with zero 
real part, there is a simple Hopf bifurcation. For the simple 
Hopf bifurcation the complex amplitude a(t) satisfies the 
equation 

Here a(t) is the amplitude of the weakly nonlinear distur- 
bance, so u = a(t) v(x) + higher-order terms, and j” is a 
(complex) coupling coefficient known as the Landau 
constant. The latter is found from a solvability condition 
needed to eliminate resonant terms at third order in the 
expansions in powers of a and a*. Allowing for spatial 
modulation, Eq. (4) becomes the G&burg-Landau equation 

(5) 

where r is a slow time and 5 is a slow space variable. In 
the single Ginzburg-Landau equation there are four 
parameters that need to be computed: 0 is found from (3) 
and p also may be computed directly from the dispersion 
relation, by using, for example, a finite differences 
approximation. These coefficients are independent of the 
nonlinear term N(u). The calculation of 2 in (5) is identical 
to the calculation of the coupling coefficient in the simple 
Hopf bifurcation equation (4). For a more detailed account 
of the theory of Ginzburg-Landau equations, one can 
consult Refs. [2] and [3]. 

Now we describe our algorithm. We expand u in Taylor 
series as follows: 

u = a exp(i(crx + by)) vi(z) 

+ a2 exp(2i(crx + uy)) v*(z) + l aI2 v&) 

+a la12exp(i(ctx+~y))v,(z)+ ... +c.c. 

Here vi is the neutral eigenfunction computed at the critical 
point R = R,, CI = CI,, /? = PC; the vj(z), j> 1 are unknown 
functions at this stage, and C.C. stands for complex con- 
jugate. Galerkin coeflicients of vi are found using Chebyshev 
transforms. The vectors wI = Tvi give us the representation of 

v, in the spectral domain. The algorithm consists of solving 
a sequence of linear inhomogeneous algebraic equation< 
corresponding to different powers of the amplitudeb. The 
novelty of the method is the use of Q-R factorization or 
Singular Value Decomposition (SVD) in the calculation of 
coupling coefficients. This technique avoids the explicit riced 
to compute adjoint eigenfunctions and the potentially 
inaccurate use of quadratures in the calculation of coupling 
coefficients. The inhomogeneous terms of linear equations 
can be generated very efficiently if the computer language 
incorporates symbolic computations. 

Let us define Q-R factorization, with pivoting, of 
the matrices B, = (A(%, fl. R) - io1) and B, = 
(A(2c(, 28, R) - 2iwI) as follows: 

B,fl, =Q,R, and B,n?=Q,R,. 

Here R,, R2 are upper triangular matrices, Q,, Q2 arc 
unitary matrices 

QjQ;” = Q,*Q, = I(j = 1,2), 

and 17,) l7* are permutation matrices. The coefficient of (I? 
yields an equation of the following form 

{A(2a, 28, R)-2iwI) wz=g>, (6) 

where the matrix A(2a, 28, R) comes from the linear 
stability problem and is evaluated for the critical values of 
parameters R = R,, CI = CI,, B = B,. Under the assumption 
that there are no resonances at the second order, the matrix 
A(2c(,, 2p,, R,)-2iwI is invertible. Then w2 can be found 
from the linear system of equations (6). The equation 
corresponding to la\’ is treated similarly. 

Next we consider the coefficient of the term a la/‘, which 
satisfies an equation of the type 

[A(@,, p,, R,) - iwI] wq = 1w, + g,. (7) 

Note that the linear operator [A(a,, /I,, R,) - ioi] is not 
invertible and, therefore, this system of equations cannot be 
solved for an arbitrary right hand side, reflecting a resonant 
condition. The coefficient 1 is found from the condition that 
Eq. (7) be solvable. In the representation B, Z7, = Q, R, we 
have R,(N, N)=O and R,(j,j)#O (j= 1,2, 3, . . . . N- l), 
since the null space of B, is one-dimensional. The coupling 
coefficient 1 therefore can be immediately found as 

E = _ (Qi%),v 
(Q:w, ),v’ 

where N is the number of basis functions used in the 
inhomogeneous direction and Q: is the matrix adjoint 
to Q,. 

Another way to compute coupling coefficients is to use 
the Singular Value Decomposition (SVD). The SVD is 
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numerically very robust and we prefer this decomposition TABLE II 
over Q-R factorization in cases with multiple or defective 
eigenvalues (e.g., the nonsemisimple double Hopf bifurca- 

Ph(ltAbsolute Value of the Phase of the 

tion considered in Mahalov and Leibovich [6] at which the 
Coupling Coefficient 1. 

eigenvalues are imaginary and have algebraic multiplicity N: 30 35 40 45 50 

two, and geometric multiplicity one). For a more detailed Ph(i): 3.11880686 3.11880684 3.11880682 3.11880682 3.11880682 

account of the theory of these decompositions and a com- 
parison of their performance, one can consult Golub and 

Note. R = 83.1, Reynolds number; Q = 415, rotation rate; 

Van Loan [7]. We define Singular Value Decompositions 
2 = -0.1 -axial wavenumber; /I = 1 -azimuthal wavenumber. N is the 
number of Chebyshev polynomials used in the inhomogeneous direction. 

of the matrices of the linear problems 

B,=A(cc,,fl,, R,)-iwI=S,D,Q: 

B, = A(2r,, 28,, R,) - 2iwI = SZD2Q;. 

3. ACCURATE CALCULATION OF COUPLING 
COEFFICIENTS IN ROTATING PIPE FLOWS 

AND IN PLANE POISEUILLE FLOW 

Here Di are diagonal matrices of singular values and S., and 
Q, are unitary matrices. We have D,(N, N)=O and 
D,(j,j)#O (j= 1, 2, 3, . . . . N- 1) since the null space of B, 
is one-dimensional. An algorithm for the calculation of 
coupling coefficients using SVD is given in the Appendix, 
written in the Mathematics style. It is worth noticing that 
the structure of the program is extremely simple. Unless the 
nonlinear term is defined incorrectly, there are very few 
places where the programmer can make a mistake. The 
coupling coefficient 3, is easily found from the resonant 
equation as 

cvg, )N 
A= -0,’ (8) 

where N is the number of basis functions and ST is the 
matrix adjoint to S, . 

Suppose now that e is the error in the calculation of g, . 
Then the error in the calculation of S:g, is Sfe. Since S: is 
the unitary matrix, we have IIS:ell = Ilell, where I( .I[ is the 
Euclidean norm. Thus, the matrix-vector multiplication in 
(8) does not amplify the error. 

We note that the Chebyshev transformation in the algo- 
rithm described in the Appendix can be accomplished in 
N log N complex multiplications. As a consequence, the 
most time consuming operations in the method are the 
matrix-vector multiplications. These multiplications require 
of the order of N2 complex multiplications with N basis 
functions used in the discretization. Thus, the total number 
of complex multiplications in the algorithm is of the 
order N2. 

TABLE I 

Ph(d)-Absolute Value of the Phase of the Coupling Coefficient 1 

In this section we report accurate calculation of coupling 
coefficients for rotating pipe flow and for plane Poiseuille 
(channel) flow. We note that the value of the coupling 
coefficient depends on the normalization of the neutral 
eigenmode, but the phase of complex number 1, is an 
invariant characteristic (up to a sign). 

In the case of the rotating pipe flow, the basic laminar 
flow has a parabolic velocity profile with maximum speed 
W, on the center-line; r. is the pipe radius and 0, its 
angular velocity. With r. and r&b as units of distance and 
time, the problem depends on the rotational Reynolds 
number, Sz, and an axial Reynolds number, R, defined by 
Q = L?,rfJv, R = r. W,/v. The coupling coellicient 1” was 
computed for two values of parameters R and Sz using the 
numerical algorithm described above. The first of the 
choices for R and 52 for these particular calculations, 
R = 1066 and S2 = 26.96, corresponds to the minimum 
rotation rate for neutral stability. The second, R = 83.1 and 
a = 415 corresponds to the minimum Reynolds number for 
neutral stability. In Tables I and II we present results of our 
calculations with N= 30, 35, 40, 45, and 50 Chebyshev 
functions used in the inhomogeneous direction for each 
component of the velocity and pressure fields. 

In the case of the channel flow with parabolic velocity 
profile we define the Reynolds number R based on the maxi- 
mum velocity of the base flow and the channel halfwidth. 
The problem may be formulated in terms of a stream- 
function. The critical Reynolds number is 5772.22 and the 
critical axial wavenumbers are cx = 1.02056 and B = 0. The 
coupling coefficient for this point on the neutral stability 

TABLE III 

Ph(itAbsolute Value of the Phase of the Coupling Coefficient 1 

N: 30 35 40 45 50 
Ph(l): 2.49479788 2.49479616 2.49479610 2.49479609 2.49479608 

Note. R = 1066, Reynolds number; a = 26.96, rotation rate; 
s( = 0.1 -axial wavenumber; #I = 1 -azimuthal wavenumber. N is the 
number of Chebyshev polynomials used in the inhomogeneous direction. 

N: 40 45 50 55 60 
Ph(l): 1.39045107 1.39158442 1.39157415 1.39157118 1.39157113 

Note. R = 5772.22, Reynolds number; a = 1.02056 - axial wavenum- 
ber; fi = 0 - axial wavenumber. N is the number of Chebyshev polynomials 
used in the inhomogeneous direction. 
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curve was computed with N = 40, 45, 50, 55, and 60 
Chebyshev functions used to represent the streamfunction 
in the inhomogeneous direction. The data is presented in 
Table III. 

4. CONCLUSIONS 

The extension of the algorithm to the case of coupled 
amplitude equations (including coupled Ginzburg-Landau 
equations) is straightforward, and an example is given in 
[6]. For example, for two interacting amplitudes a and b 
the function u is expanded in the Taylor series with terms of 
the form ~~(a*)~ b”(b*)“. After that, one needs to solve a 
sequence of linear inhomogeneous equations corresponding 
to different powers of the amplitudes. The coupling coef- 
ficients are found with the method described above from the 
resonant equations using Q-R factorization or SVD of 
matrices of the linear stability problem. 

APPENDIX 

t* 
(* Read data corresponding to the 
(* unitary matrices S, and Q,. *) 
t* *I 
SO = << SO.data; Sl = << Sl.data; S2 = << S2.data; 
QO = << QO.data; Q 1 = << Q l.data; Q2 = << Q2.data; 
( * Read singular values 0,. *I 
DO = << DO.data; D 1 = <<D l.data; 02 = << D2.data; 
t* *I 

).t’* = Q2((S2*gz)/D2); 
t* 
(* Find the representation in the physical domain 
(* of the second harmonic corresponding to 
(* u’ using Inverse Fast Chebyshev Transform. 

r::= T ‘[wr], 
(* *) 
(* Repeat previous steps for the equation *) 
(* corresponding to (a( *. *I 
t* *I 
(* Find the representation in the physical domain * ) 
(* of the inhomogeneous term in the equation for a lcll’. *) 

.I:= Coeflicient[N[u], a Ial’]; 
*I 

t* *I 
(* Find the representation in the spectral domain *I 
(* of the inhomogeneous term in the equation *I 
( * for a /aI * using Fast Chebyshev Transform. *I 
t* *I 

;r:= TChl; *) 
(* Find the coupling coefficient iv. *I 
* 

:= -((Sl*) g,)[N]/((Sl*)r+,,)[N]; 
*I 
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(* 
(* Find the representation in the physical domain 
(* of the inhomogeneous term in the 
(* equation for u2. 
t* 
f2 = Coefficient[N[u], a’]; 
(* 
(* Find the representation in the spectral domain 
(* of the inhomogeneous term in the equation 
(* for u* using Fast Chebyshev Transform. 
t* 

7” = Tcf23; 
(* Find the representation in the spectral domain :; 
(* of the second harmonic corresponding to u2. *I 
(* This step requires the following operations: 
(* matrix-vector multiplication with the adjoint of S2, 1; 
(* division of each component of the resulting *) 
(* vector by the corresponding singular value, 
(* matrix-vector multiplication with the matrix Q2. :; 

t* *I 
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